$60.00 CAD

NWA 11444 is a lunar meteorite recovered near Mauritania in 2017! Lunar meteorites are rocks ejected into space by asteroid impacts on the moon. Some of this debris was captured by the gravitational pull of the Earth.

NWA 11444 was found by Mauritanian dealer Ali El Wali and the scientific analysis was published in Gattacceca J., Bouvier A., Grossman J., Metzler K., and Uehara M. (2019) Meteoritical Bulletin, no. 106. Meteorit. Planet. Sci. 54 in press.

This lunar material had fragmented into smaller pieces during entry of Earth's atmosphere, and these are some of those fragments.

This frame measures 4"X3" and can be shipped worldwide! The photos are representative of the variety you will receive.


Physical characteristics: The sample comprises approximately 200 pieces, with a total mass of 1323 g. Some of these pieces have a dark appearance, possibly the result of wind abrasion. Fragments with a lighter-colored outer surface are also present and these often have variable amounts of adhering sand. It is presumed that these were at least partially buried at the time of recovery. In hand specimen, all the pieces display prominent angular to sub-rounded, feldspar-rich, clasts, up to 1.5 cm in diameter, enclosed in a dark matrix, laden with smaller, angular fragments.

Petrography (R. Greenwood, OU): The sample is a complex breccia, containing a wide variety of fragments and variable amounts of flow-banded glass. Fragments are generally angular and include coarse-grained to aphanitic gabbros and basalts and a wide range of single-crystal types. There are many examples of clasts consisting of brown, devitrified basaltic glass with acicular plagioclase microlites. Angular, crystal fragments can be up to 0.5 mm in diameter and consist predominantly of plagioclase, pyroxene (often displaying well-developed exsolution lamellae), and olivine. Both high and low Ca pyroxenes are present in the gabbroic clasts, with both often showing prominent exsolution lamellae. The specimen contains a few percent of anhedral Fe,Ni metal grains (kamacite), up to 150 μm in diameter. The glass is often highly vesicular, flow-banded and contains a diverse range of crystals and lithic fragments.

Geochemistry: Mineral compositions and geochemistry: Pyroxenes show wide compositional variation, with both high and low Ca varieties present. Average composition: Fs35.1±11.4Wo16.1±14.2 (N=15, range Fs30Wo4 to Fs18Wo42). Olivine, average composition: Fa37.1±16.9 (N = 21, range Fa7-67). Well-developed exsolution lamallae are commonly present. Plagioclase shows limited compositional variation: An96.5±0.5 (N=11). Fe, Ni Metal grains (up to 150 microns in diameter) are kamacite (7 to 8 wt.% Ni) (N = 6). All mineral compositions determined by EDS analysis. Oxygen isotopes: δ17O 3.28 per mil; δ18O 6.28 per mil; Δ17O 0.01 per mil (using standard formula: Δ17O = δ17O - 0.52 δ18O) (Analysis is consistent with the oxygen isotopic composition of other lunar meteorites).

Classification: Lunar, melt breccia. Moderate weathering